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LETTER TO THE EDITOR 

Quantum Monte Carlo study of a two-dimensional Heisenberg 
antiferromagnet with non-magnetic impurities 

J Behre, S Miyashita? and H-J Mikeska 
Institut fur Theoretische Physik, Universitat Hannover, Hannover, 3000, Federal Republic 
of Germany 

Received 17 September 1990 

Abstract. The magnetic properties of a two-dimensional spin-4 Heisenberg antiferromagnet 
with non-magnetic impurities is studied by the quantum Monte Carlo method. The com- 
bined effect of quantum effects and dilution on the ordering process is investigated. In 
particular, the dependence of sublattice magnetization on impurity concentration is calcu- 
lated. It is found that the staggered order has its maximum value at a finite concentration 
of non-magnetic impurities (-13%) but not at the pure system. 

Spin-; magnetic insulators have attracted renewed interest in connection with high- T, 
superconducting materials. Several experimental investigations of the magnetic proper- 
ties of the oxide superconductors La2-,SrsCu04 [ 13 and Y1BazCu30a+s [2,3] have 
stimulated this activity. 

In this letter we report first results of a quantum Monte Carlo (QMC) calculation 
of the magnetic properties of the d = 2 Heisenberg antiferomagnet with non-magnetic 
impurities. Whereas theoretical efforts to understand the systems of interest usually 
concentrate on the Hubbard model (see e.g. [4-6]), the Heisenberg model (i.e. the 
large- U limit of the Hubbard model for half-band filling) with immobile impurities is 
technically much simpler (avoiding ‘the minus-sign problem’ for the fermions in QMC) 

and enables us to deal with larger lattices. The model is both of primary theoretical 
interest, namely the effect of dilution for systems with strong quantum fluctuations, 
and has significance for actual experiments. Our results are probably most relevant 
for substances like Nd,-sCe,Cu04 [7], where doping creates magnetic dilution rather 
than frustration. 

The model is described by the following Hamiltonian: 

H = 2 SiSj ( 1 )  
( i , j )  

where Si are spin operators (Si = f a i )  and i and J are nearest neighbours on a square 
lattice. For the pure model, QMC calculations have shown that the system has a strongly 
correlated ground state [8,9] and have strongly suggested the existence of an ordered 
ground state [8], in agreement with spin-wave calculations [lo, 111. At finite tem- 
peratures the system is disordered with, however, a correlation length diverging as 
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exp(a/ T )  [ 12, 131. By holes we mean missing spins; this is equivalent to all coupling 
strengths between the hole and the surrounding spins being zero. These holes are 
static and cannot move through the lattice. This approach is related to the work of 
Morgenstern [ 141 but is different in detail; his work concentrated on the effect of 
frustrated bindings. Since the order in the ground state results from a subtle competition 
between cooperative interactions and quantum fluctuations, the influence of impurities 
is of particular interest. In classical systems, an increasing concentration of impurities 
clearly weakens cooperative interactions and thus finally destroys order even in the 
ground state, but in systems with strong quantum fluctuations the effect of dilution is 
not obvious. In this letter, we report some evidence which shows the failure of the 
simple classical scenario. In particular, we find that the NCel order is enhanced at 
some finite impurity concentration. This may suggest that a small amount of impurities 
weakens quantum fluctuations and supports the tendency to classical order. 

We study the system by the quantum Monte Carlo method, as formulated by Suzuki 
[15]. We study systems on the square lattice with L * L sites up to L =  16 and Trotter 
number n = 48 for hole concentrations S less than 50%. The method for the present 
model has been described in detail in the previous work of one of the authors [9] for 
the pure case. Here we extend this method in order to include impurities, which requires 
larger matrix dimensions for the Boltzmann factor of the unit cell (38 instead of 2' as 
previously used). Details of the method will be reported elsewhere [ 161. Periodic 
boundary conditions are applied in all directions. We calculate the energy, the squared 
staggered magr etization (which is used as the order parameter) 

(N2,>= (( c d - ic  c B u z ) 2 )  
i e A  

where A and B denote the two sublattices, and the staggered susceptibility as discussed 
in [9]. We have included global flips in x, y and in the Trotter direction which mean 
that a line of spins may be flipped at the same time, changing particle- and winding- 
number, respectively [ 171. The ergodicity and convergence are tested by comparison 
with exact calculation in the L = 4 systems, using the matrix iteration method. These 
results agree well with the QMC data for T = 0.2. The ergodicity problem in diluted 
systems is much more complicated than for the pure case. But, a comparison of data 
and without global flips in x and y directions shows no significant difference if the 
iteration is sufficiently long. Hole positions are chosen at random for each sublattice 
separately. Thus systems are specified by numbers of impurities on A and B sublattices, 
N A  and NB, respectively. The 6 is defined as S = ( N A  + Ns) /  N. The ratio of N A  to 
NB is important when we study the magnetic susceptibility. If we choose different hole 
numbers for each sublattice the magnetization of the ground state is not necessarily 
zero (see also reference [16]). So far we have not performed averaging over samples 
with different hole positions, partly because we are currently interested in individual 
phenomena in diluted systems and also because it is too time consuming. Of course, 
averaging has to be performed to obtain physical quantities in diluted systems. Tests 
for some concentrations show no difference in the qualitative behaviour. 

The convergence for the large systems at low temperatures is very slow and takes 
up to 350000 MCS. The deviation due to the Trotter decompo.sition is of the order 
l / n 2  so we run the simulation for several n-values and fit the data to a polynomial in 
l / n 2  by a least-squares fit. The error in the extrapolation n + m  is smallest for a 
quadratic fit and less than 4%. Comparison with a cubic fit, namely up to l / n 6 ,  shows 
no significant difference and could be used as a test for convergence. 
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The data for T = 0.2 in units of the exchange energy seem to represent the ground 
state reasonably well, in particular for the lower hole concentrations. The total energy 
shows an increase with hole concentration S (figure 1) as expected. The data points 
for each lattice size nearly lie on one linear curve. The order parameter shows much 
more interesting behaviour. The square of the total sublattice magnetization ( N I /  L4) 
(i.e. the value per site, not per spin) has a maximum at non-zero hole concentration 
for system sizes greater than L = 4, and vanishes near 6 5 40% (figure 2). This agrees 
with the site percolation threshold 6 = 0.41 [18]. Systems with L greater than 6 show 
the maximum value at S = 13%, that is they show a non-monotonic dependence on 
the concentration. This unexpected behaviour seems to be reinforced with increasing 
system size. The same behaviour is seen in other systems with different hole positions. 
This non-monotonicity is also found in the staggered suceptibility. The data for S = 0 
agree with those of [8,9] (a factor of 4 comes from the different normalization in the 
former). 

The temperature dependence of the sublattice magnetization for L = 12 and for 
different concentrations is plotted in figure (3). Here we see that the non-monotonicity 
is a phenomenon at low temperature, which strongly suggests that it is largely due to 
quantum effects. For higher temperatures the lines cross and S = 0 becomes the highest 
value. The behaviour at lower temperatures will be documented in a further report. 
In figure (4) the temperature dependences for S = 12.5% are shown for various system 
sizes. The decrease of the sublattice magnetization in T is faster for larger systems 
than for smaller ones. This can be explained with reference to the finite correlation 
length. 
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Figure 1. Energy against hole concentration for different system sizes ( T = 0.2). 
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Figure 2. Sublattice magnetization against hole concentration for different system sizes 
( T = 0 . 2 ) .  
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Figure 3. Sublattice magnetization against temperature for L = 12. (Lines are drawn to 
guide the eye. Concentration for each symbol is given in the inset.) 
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Figure 4. Sublattice magnetization against temperature for different system sizes and 
S = 12.5%. (Lines are drawn to guide the eye. System size for each symbol is given in the 
inset.) 

Our results show that the effect of holes in the S = 4, d = 2 Heisenberg antiferro- 
magnet is to suppress quantum fluctuations. For small hole concentrations the ground 
state becomes closer to the classical NCel state and the sublattice magnetization 
increases, while for larger hole concentrations the vanishing of long-range order is 
determined by the percolation threshold (as in the classical model). At present we 
have no explanation, from first principles, for this observation at low concentrations 
which contradicts naive expectations and may be the result of a subtle combination 
of quantum effects, finite-size effects and finite temperatures. The mechanism of this 
non-monotonicity should contribute to the understanding of quantum fluctuation and 
should be clarified in the future. This unexpected behaviour of the impure system is 
not obtained when the effect of impurities is taken into account via the change in the 
spin-wave spectrum as calculated recently [ 191. The decrease in spin-wave energy with 
6 implies a corresponding decrease in the order parameter. The effect of the impurities 
as observed in our calculations thus appears to be strongly localized and clearly calls 
for further theoretical and experimental investigations. 

We have also found similar non-monotonic behaviour in the staggered susceptibility 
and magnetic susceptibility. This will be reported elsewhere. 
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